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Abstract 

Background: The core intrinsic connectivity networks (core-ICNs), encompassing the default-mode network (DMN), 
salience network (SN) and central executive network (CEN), have been shown to be dysfunctional in individuals with 
internalizing disorders (IDs, e.g. major depressive disorder, MDD; generalized anxiety disorder, GAD; social anxiety 
disorder, SOC). As such, source-localized, closed-loop brain training of electrophysiological signals, also known as 
standardized low-resolution electromagnetic tomography (sLORETA) neurofeedback (NFB), targeting key cortical 
nodes within these networks has the potential to reduce symptoms associated with IDs and restore normal core ICN 
function. We intend to conduct a randomized, double-blind (participant and assessor), sham-controlled, parallel-
group (3-arm) trial of sLORETA infraslow (<0.1 Hz) fluctuation neurofeedback (sLORETA ISF-NFB) 3 times per week over 
4 weeks in participants (n=60) with IDs. Our primary objectives will be to examine patient-reported outcomes (PROs) 
and neurophysiological measures to (1) compare the potential effects of sham ISF-NFB to either genuine 1-region 
ISF-NFB or genuine 2-region ISF-NFB, and (2) assess for potential associations between changes in PRO scores and 
modifications of electroencephalographic (EEG) activity/connectivity within/between the trained regions of interest 
(ROIs). As part of an exploratory analysis, we will investigate the effects of additional training sessions and the poten-
tial for the potentiation of the effects over time.

Methods: We will randomly assign participants who meet the criteria for MDD, GAD, and/or SOC per the MINI (Mini 
International Neuropsychiatric Interview for DSM-5) to one of three groups: (1) 12 sessions of posterior cingulate 
cortex (PCC) ISF-NFB up-training (n=15), (2) 12 sessions of concurrent PCC ISF up-training and dorsal anterior cin-
gulate cortex (dACC) ISF-NFB down-training (n=15), or (3) 6 sessions of yoked-sham training followed by 6 sessions 
genuine ISF-NFB (n=30). Transdiagnostic PROs (Hospital Anxiety and Depression Scale, HADS; Inventory of Depres-
sion and Anxiety Symptoms – Second Version, IDAS-II; Multidimensional Emotional Disorder Inventory, MEDI; Intoler-
ance of Uncertainty Scale – Short Form, IUS-12; Repetitive Thinking Questionnaire, RTQ-10) as well as resting-state 
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Introduction
Background and rationale
Mental disorders are one of the most common causes of 
morbidity and mortality worldwide [1] with rates mark-
edly increasing in recent years [2–6]. Here in New Zea-
land, it is estimated that one in five people is suffering 
from mental illness at any given time with a majority 
likely to experience at least one episode at some point in 
their lifetime [7]. Internalizing disorders (IDs, e.g. gen-
eralized anxiety disorder, GAD; social anxiety disorder, 
SOC; major depressive disorder, MDD; posttraumatic 
stress disorder, PTSD) are the most prevalent psycho-
pathologies experienced worldwide [1, 8–11] and can 
be broadly characterized by a proclivity to direct dis-
tress inwardly [12–16]. Notably, IDs are highly comor-
bid [17–19] with females [20–23] and young people (i.e. 
<65 years) [8, 10, 17–19, 22, 24–29] disproportionately 
affected.

In recent years, neuropsychiatric research is pointing 
to transdiagnostic, neurobiological aberrations specifi-
cally involving the so-called core intrinsic connectivity 
networks (c-ICNs) which include the default mode net-
work (DMN), central executive network (CEN) and sali-
ence network (SN) [30–33]. Briefly, the DMN is anchored 
in the posterior cingulate cortex (PCC) and medial pre-
frontal cortex (mPFC), and putatively subserves inter-
nally directed thought [34, 35]. The CEN, anchored in 
the dorsolateral prefrontal cortex (dlPFC) and posterior 
parietal cortices (PPC), is associated with executive func-
tioning [36–42]. Lastly, the SN, anchored in the ante-
rior insula (aINS) and dorsal anterior cingulate cortex 
(dACC), is believed to be important for the detection of 
salient stimuli and switching between the other c-ICNs 
[43, 44]. Additionally, the c-ICNs have also been associ-
ated with autonomic nervous system (ANS) modulation 
[45–50] possibly helping to explain the ANS dysfunction 
consistently reported across psychopathologies [51, 52].

In 2011, the converging neurobiological evidence led 
Menon and colleagues to propose a unifying theory of 
psychopathology termed the ‘triple network model’ [31, 
53–55]. The central tenet of this theory is that the sen-
sorial, cognitive, affective, and behavioural dysfunctions 
associated with mental illnesses are the result of disrup-
tions within and between the c-ICNs. Since its inception, 
support for this model has been rapidly mounting within 
the ID-domain (e.g. [56–59]). Notably, to our knowledge, 
our lab was the first to validate this model with (source-
space) electroencephalography (EEG) [60].

EEG non-invasively tracks and records electrophysi-
ological signals generated by the brain [34–36]. Although 
traditionally used to assess activity in sensor-space, mod-
ern source-space algorithms (e.g. low-resolution brain 
electromagnetic tomography, LORETA [61, 62]) now 
allow accurate estimations of the regions (i.e. nodes) 
responsible for generating the scalp-recorded electro-
physiological signals. Further, although standard clinical 
EEGs typically limit the recording bandwidth to tradi-
tional frequency bands (i.e. delta ~1-4 Hz, theta ~4-8 Hz, 
alpha ~8–12 Hz, beta ~12–30 Hz, gamma >30 Hz), 
acquisition and analyses of frequencies at the low end 
of the spectrum, commonly termed electrophysiologi-
cal infraslow fluctuations (eISFs; <0.1 Hz), are now pos-
sible [63]. Russian scientists discovered eISFs over half a 
century ago, first in rabbits [64, 65] and shortly thereaf-
ter in humans [66] but, due in large part to technologi-
cal challenges, they have received little interest from the 
scientific and clinicical communities until recently [63, 
67–70]. Putatively engendered by a combination of neu-
ronal and glial currents [63, 68, 71–76], eISFs have been 
shown in both cortical [65, 66, 77] and subcortical [76, 
78–82] tissues and are believed to coordinate large-scale 
ICN organization and long-range information exchange 
[68, 83–91]. As such, treatments specifically target-
ing eISFs within core nodes of the triple network may 

neurophysiological measures (full-band EEG and ECG) will be collected from all subjects during two baseline sessions 
(approximately 1 week apart) then at post 6 sessions, post 12 sessions, and follow-up (1 month later). We will employ 
Bayesian methods in R and advanced source-localisation software (i.e. exact low-resolution brain electromagnetic 
tomography; eLORETA) in our analysis.

Discussion: This protocol will outline the rationale and research methodology for a clinical pilot trial of sLORETA 
ISF-NFB targeting key nodes within the core-ICNs in a female ID population with the primary aims being to assess its 
potential efficacy via transdiagnostic PROs and relevant neurophysiological measures.

Trial registration: Our study was prospectively registered with the Australia New Zealand Clinical Trials Registry 
(ANZCTR; Trial ID: ACTRN12619001428156). Registered on October 15, 2019.

Keywords: Internalizing disorders, Generalized anxiety disorder, Major depressive disorder, Social anxiety disorder, 
EEG neurofeedback, Infraslow fluctuations, Triple network, Salience network, Default mode network, Central executive 
network, Randomized controlled trial
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address c-ICN dysfunction and offer clinical utility in the 
treatment of IDs.

Although traditional frontline therapies (i.e. pharmaco-
therapy and psychotherapy) are effective for many, they 
offer numerous shortcomings including high failure rates 
[92–98], lack of access [22, 99–102], and marked adverse 
side-effects [52, 99, 100, 103–105]. Closed-loop brain 
training of electrophysiological (EEG) signals, also known 
as EEG-neurofeedback (EEG-NFB), is a non-invasive 
therapy aimed at modulating brain function by teaching 
individuals, via associative learning (e.g. operant condi-
tioning), to self-regulate their brain function via auditory, 
visual, and/or tactile feedback [106]. Intriguingly, EEG-
NFB’s impact on the brain may intensify following the 
cessation of therapy putatively due to treatment-induced 
neuroplasticity; however, a general lack of extended 
follow-up and failure to assess for the emergence of 
delayed treatment effects is common in the literature 
[107]. That said, sceptics assert that comparable clinical 
improvements in both experimental and control groups 
in randomized, double-blind, sham-controlled trials sug-
gest that EEG-NFB’s efficacy rests entirely on ‘non-spe-
cific’ psychosocial factors (i.e. expectations, motivation, 
demand characteristics, context) [108–119]. However, 
proponents contend that evidence of differential EEG-
learning (i.e. greater change in the targeted electrophysi-
ological variable(s) and/or region(s)-of-interest (ROIs) 
in the genuine versus sham groups), considered by many 
to be essential for a valid evaluation of EEG-NFB’s speci-
ficity [120–126], was noticeably absent in the trials pre-
sented as evidence for wholly non-specific effects [127, 
128]. That said, assessments of differential EEG-learning 
are complicated by a lack of standardized criteria for the 
determination of learning (or a lack thereof ) [129]. In any 
case, EEG-NFB has shown promising clinical effects in a 
wide various of conditions [130–135] including IDs [102, 
136–155]. Further, clinicians have reported success in ID 
populations using sensor-space EEG-NFB targeting eISFs 
(ISF-NFB) [156–158]. Advanced source-localization (i.e. 
standardized LORETA, sLORETA [62]) combined with 
ISF-NFB is a novel introduction to the field that has been 
shown by our research group in a feasibility trial on obese 
females to improve sleep and wellbeing with minimal 
side-effects [159, 160].

To our knowledge, this is the first randomized, 
double-blind, sham-controlled trial examining the 
potential effects of source-space ISF-NFB in an ID 
population. Furthermore, our relatively novel transdi-
agnostic approach heeds recent calls for a more prag-
matic, ecologically valid clinical research [161–171]. 
As detailed below, our primary objectives will be 
to examine patient-reported outcomes (PROs) and 

neurophysiological measures to (1) compare the poten-
tial effects of sham ISF-NFB to either genuine 1-region 
ISF-NFB or genuine 2-region ISF-NFB and (2) assess 
for potential associations between changes in PRO 
scores and modifications of EEG activity/connectivity 
within/between the trained ROIs.

Study objectives
Primary research questions

Objective 1 To compare the potential effectiveness 
of genuine ISF-NFB versus sham ISF-NFB for treating 
IDs in a female population. We will assess differences 
between sham ISF-NFB (sham) and single-region ISF-
NFB (ISF1) or multi-region ISF-NFB (ISF2) in PROs and 
neurophysiological measures (i.e. EEG and HRV) after 6 
training sessions (post 6 sessions). We hypothesize that 
all groups will show clinical improvements via non-spe-
cific (e.g. placebo) effects; however, ISF1 and ISF2 groups 
will demonstrate additional improvements due to spe-
cific effects (i.e. effects specific to the modulation of the 
trained ROIs).

Objective 2 To assess whether there is a potential rela-
tionship between changes in PROs and EEG variables 
post 6 sessions. Specifically, we are interested in whether 
there is evidence for an association between changes 
in the primary PRO (i.e. Hospital Anxiety & Depres-
sion Scale, HADS) scores and targeted ROI activity and 
connectivity.

Secondary research questions

Objective 3 To assess the potential clinical effects of an 
additional 6 treatment sessions (i.e. post-6 to post-12 ses-
sions), we will examine changes in PROs and neurophysi-
ological measures amongst the ISF1 and ISF2 groups. We 
hypothesize that additional sessions will provide addi-
tional benefits for both treatment groups.

Objective 4 To explore the potential for increased 
medium-term effects from ISF-NFB treatment at 
1-month follow-up, we will examine changes in PROs 
and neurophysiological measures amongst the ISF1 and 
ISF2 groups.

Objective 5 To explore whether any potential associa-
tions observed in Objective 2 can be extended to post 12 
sessions and 1-month follow-up amongst the ISF1 and 
ISF2 groups.
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Trial design
This study is a randomized, double-blind (participants 
and assessors), yoked-sham controlled (playbacks of gen-
uine ISF-NFB sessions from another female ID partici-
pant at the same training stage), parallel-group (3-arm = 
sham, ISF-1, ISF-2), superiority, pilot trial with an alloca-
tion ratio of 2:1:1 (sham:ISF1:ISF2).

Methods: participants, interventions, 
and outcomes
Study population and setting
Our target population is adult females meeting the 
DSM-5 criteria for one or more IDs of interest (i.e. GAD, 
SOC and/or MDD). Our trial will recruit all participants 
from the community in and around Dunedin, New Zea-
land and be undertaken at the Departments of Surgi-
cal Sciences and Psychological Medicine, University of 
Otago, Dunedin, New Zealand.

Eligibility criteria
Inclusion criteria:

1. Able to give informed consent
2. Adult between 18 and 64 years old
3. Biological female
4. Meets the DSM-5 criteria for one or more of the fol-

lowing current diagnoses:

a. GAD
b. SOC
c. MDD

5. Never undergone EEG-NFB therapy

Exclusion criteria:

 1. Starting new medications or altering dosages of 
existing medications <4 weeks prior to their  1st 
baseline session or at any time during the trial.

 2. Currently taking short-acting benzodiazepines (i.e. 
midazolam, triazolam)

 3. Undergoing intensive psychotherapy (e.g. cognitive 
behavioural therapy)

 4. Any externalizing disorder (e.g. antisocial personal-
ity disorder, alcohol/substance abuse disorder)

 5. Any thought disorder (e.g. mania, bipolar disorder)
 6. Any Neurological disorder (e.g. epilepsy)
 7. Deemed to be at high-risk of suicide per the 

Columbia-Suicide Severity Rating Scale (C-SSRS – 
Screen Version)

 8. Pregnant females
 9. Pacemaker

 10. Post-concussion syndrome

Drop-out criteria:

1. Refusal to participate
2. Misses >1 intervention session

Additional consent provisions for collection and use 
of participant data and biological specimens
Not applicable: no biological specimens will be collected, 
and all data is to be used solely in accordance with this 
trial.

Explanation for the choice of comparators
Our choice of sham-controls allows us to elucidate any 
potential specific (e.g. non-placebo) effects and addresses 
widespread concerns of generally weak methodological 
designs in NFB trials [102, 172–174].

Recruitment
To reach the widest possible audience, ID participants 
will be recruited via both posters placed around the city 
and targeted Facebook ads with an invitation to partici-
pate in a University of Otago mental health study. Adver-
tisements will direct potential participants to a webpage 
that will describe the trial and invite those interested 
to complete a short online form which will query basic 
information including first name, age, date of birth, sex, 
ethnicity, education level, handedness, mental health his-
tory, pregnancy status, presence of electronic implants 
(i.e. pacemakers), email address, and phone number. 
Individuals who complete the online form and meet 
the basic qualifications will be contacted via email and 
asked to attend an in-person mental health interview at 
the University of Otago Hospital, Dunedin, New Zea-
land. Those that agree will be provided directions to the 
lab and a digital copy of the 7-page participant informa-
tion sheet (PIS). A reminder text will be sent to potential 
participants on the day of their interview. Recruitment 
will continue until our target sample sizes are met and 
is expected to take 18–24 months. To help foster our 
recruitment efforts, all participants who complete the 
study will receive a $40 supermarket voucher as reim-
bursement for any parking expenses.

Who will take informed consent?
At the initial meeting, a male doctoral/PhD student will 
(1) provide each potential participant with a paper copy 
of the participant information sheet written in English, 
(2) query if they have read and understood the document, 
(3) ask if they have any questions about the trial, and 
(4) request written informed consent from individuals 
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willing to participate in the study. Participants will be 
informed that they may withdraw at any time without 
giving a reason and that all data collected up to the point 
of withdrawal may be used in the final analyses.

Screening
Following the attainment of informed consent, a trained 
male doctoral/PhD student conduct the Mini-Interna-
tional Neuropsychiatric Interview (MINI; English version 
7.0.2 for DSM-5) [175]. The MINI is a brief structured 
diagnostic interview, shown to be both valid and reliable, 
used to assess the 17 most common psychiatric disorders 
including MDD, suicidality, bipolar, panic disorder, ago-
raphobia, SOC, obsessive-compulsive disorder, PTSD, 
alcohol use disorder, substance use disorder, psycho-
ses, anorexia, bulimia, binge-eating disorder, GAD, and 
anti-social personality disorder [176, 177]. In the event 
that the interviewer suspects that the interviewee is at 
high-risk for suicide per the MINI, he will screen using 
the Columbia-Suicide Severity Rating Scale (C-SSRS – 
Screen Version [178]) with affirmative answers to ques-
tions 4, 5 and/or 6b initiating immediate referral to 
Emergency Psychiatric Services. Those meeting the eli-
gibility criteria will be enrolled into the study, have their 
anthropometric (i.e. height and weight) measurements 
taken, and be scheduled for their baseline assessments. 
Participants will also be familiarized with the study 
equipment, procedures, and personnel.

Baseline assessments
Baseline assessments will take place on two separate 
occasions approximately 1-week apart with baseline 
#2 values used as reference. Duplicate baseline assess-
ments will be performed to mitigate the influence of 
certain non-specific effects (i.e. regression to the mean 
[179] and elevation bias [180]) that may confound 
clinical trials. All assessment sessions for a given sub-
ject will take place at approximately the same time of 
day and be led by a female research assistant. Prior to 
each assessment session, participants will be asked 
to abstain from (1) food and water for 2 h, (2) smok-
ing/vaping for 8 h, and (3) strenuous exercise, alcohol, 
caffeine and over-the-counter medication for 24 h. A 
reminder email and text will be sent to each participant 
one day prior to and on the day of the assessment ses-
sions, respectively. Adherence to lifestyle restrictions 
will be queried at the beginning of each session with 
any breaches recorded. In cases of serious breaches (e.g. 
consumption of alcohol in the prior 24 h), assessment 
sessions will be rescheduled. In addition, the subject’s 
previous night’s sleep duration will be documented, 
and they will be asked to use the toilet immediately 

prior to testing to ensure an empty bladder. Together, 
these standardization procedures are in line with cur-
rent recommendations for neurophysiological data col-
lection [181–183] and will help to control for variability 
in neurophysiological output stemming from important 
factors like circadian rhythms [184, 185], gastric disten-
tion [182, 186, 187], hydration levels [182, 188], bladder 
distention [182, 189], caffeine [190, 191], nicotine [192, 
193] and alcohol [194, 195].

All PROs (English versions) will be re-created in 
digital form via Qualtrics [196] which will allow par-
ticipants to complete them using an iPad during their 
EEG set-up. To prevent missing data, a visual alert will 
be generated if any queries on a given form have miss-
ing responses. Research has indicated the electronic 
data collection increases the speed, accuracy, and user 
acceptability of the process [197–199]. The estimated 
total time to complete the battery of PROs is 20 min. 
The order of PRO administration will be standard-
ized and based on questionnaire length (i.e. IDAS-II > 
MEDI > HADS > IUS-12 > RTQ-10).

Following completion of their PROs, neurophysi-
ological data will be collected from each participant 
using Compumedics Neuroscan SynAmps RT 64-chan-
nel amplifier (DC mode, input impedance >10 GΩ, 
24-bit analogue-to-digital resolution, common mode 
rejection >110 dB) using a continuous sampling rate 
of 1000 Hz. Recordings will take place in a quiet, cool 
(~15°C), dimly lit room as participants are seated 
upright in a comfortable chair with their eyes closed. 
We chose the eyes-closed condition because it has 
been reported to improve EEG reliability [200, 201]. 
The 10.5 min resting-state full-band EEGs (fb-EEGs) 
will use high-density (64-channel) silicone Quik-Cap 
Hydro Net caps with Ag/AgCl electrode placements 
corresponding to the international extended 10/20 sys-
tem. The ground electrode is positioned at AFz with 
the reference electrode midway between Cz and CPz. 
Electrooculography (EOG) will track vertical and hori-
zontal eye movements. The cap is soaked in a saline 
solution at least 30 min prior to application and all 
electrode impedances will be kept below 10 kΩ. To help 
reduce impedances, subjects will be asked to arrive 
with non-braided, dry, clean (i.e. no conditioner, gels, 
pastes, or sprays) hair. Concurrent with the resting-
state EEG, a spontaneous breathing standard limb lead 
(lead-II) electrocardiogram (ECG) using Ag/AgCl elec-
trodes will be performed. Following, a 10 min metro-
nome paced breathing (12 breaths per minute) ECG 
with a 1:1 inspiratory/expiratory (I/E) ratio (i.e. 2.5-s 
inhalation/2.5-s exhalation) was collected. During pac-
ing, participants will be instructed to breathe through 
their nose at normal depth (i.e. no deep breathing).
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Randomization
Following baseline #2 measurements, participants were 
randomized to one of 3 arms: (1) yoked-sham, (2) ISF1 
= PCC up-training, or (3) ISF2 = concurrent PCC up-
training and dACC down-training. Sham participants 
were offered active ISF-NFB upon their completion of the 
trial, thereby minimizing the potential of sham trial-asso-
ciated participation barriers [202] as well as addressing 
any potential ethical concerns of sham-only allocations.

Sequence generation
The randomization scheme will be generated by using 
the Web site Randomization.com [203] by a lab member 
from our group with no direct contact with the partici-
pants. This tool is a valid randomization program utilized 
by clinical trial researchers. Block randomization with 
random block sizes and a 2:1:1 (sham: ISF1: ISF2) alloca-
tion will be utilized.

Concealment mechanism
Randomization sequences were kept in the central office 
in sequentially numbered, sealed, opaque envelopes pre-
pared by the lab member who generated the randomiza-
tion scheme. To ensure concealment, the block sizes will 
be known only by this lab member and not be disclosed 
to any of the researchers who have contact with the 
participants.

Implementation (enrolment and assignment)
TMP is responsible for participant enrolment and will 
assign participants to interventions following base-
line assessments and upon arrival at their first ISF-NFB 
session.

Who will be blinded?
This is a double-blind study whereby participants and 
raters will be unaware of group assignments. The ISF-
NFB trainer will not be blinded. To improve participant 
blinding, all aspects of sham sessions will be identical 
to active sessions including the live recording of sham 
participants’ EEGs along with real-time artefact alerts. 
Blinding integrity will be assessed post 6 sessions via a 
brief electronic questionnaire whereby participants will 
be queried as to (1) their perceived group allocation, (2) 
confidence in their answer to question 1 on a scale of 
0–100%, (3) reason for their answer to question 1, and 
(4) if their group assignment was revealed to them in any 
way.

Procedure for unblinding if needed
Treatment assignment will be disclosed to trial partici-
pants only upon their completion of the study.

Intervention descriptions
Training sessions will commence within 1-week after 
baseline #2 assessments. To help reduce impedances, 
subjects were asked to arrive with non-braided, dry, 
clean (i.e. no conditioner, gels, pastes, or sprays) hair. 
Participants will attend three 30-min sessions per week, 
every other day, over 4 consecutive weeks (12 sessions 
in total). 19-channel sLORETA ISF-NFB training will be 
performed using a DC coupled amplifier produced by 
Brainmaster Inc. and the BrainAvatar software (version 
4.7.5.844) in a quiet, cool (~15°C), dimly lit room by an 
unblinded male researcher with >2 years of experience 
in the administration of NFB. Participants will be seated 
in a comfortable chair and an appropriately sized Comby 
EEG cap will be placed on the participant’s head. Using a 
blunt need and syringe, the scalp will be mildly abraded 
prior to the application of an electrolyte gel beneath each 
electrode. It should be noted that the purpose of the cool 
room and scalp abrasion is to mitigate contamination of 
the EEG signal by electrodermal (i.e. sweat gland) poten-
tials which are known to mimic brain-derived eISFs [63, 
69]. Nineteen-channel EEGs will be recorded with the 
silver/silver chloride (Ag/AgCl) electrodes positioned 
according to the International 10–20 system (i.e. Fp1, 
Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, 
T6, Fz, Cz, Pz) using a linked mastoids reference and a 
ground electrode positioned centrally between F3, Fp1, 
Fz and Fpz. The impedances of the active electrodes will 
be kept below 10 kΩ and a 50 Hz notch filter will be set.

Immediately prior to each training period, a demon-
stration of motion artefact alerts will be performed with 
instructions to avoid eye/head/face movements to mini-
mize this non-rewarding feedback. Participants will then 
be instructed to close their eyes, relax, stay awake, and 
listen to the sound being played. They will be informed 
that the sound they hear reflects that they are doing well. 
Notably, no explicit strategies or instructions were given 
as, with few exceptions [204], implicit strategies have 
been shown to produce better outcomes [205–210].

Continuous, real-time auditory feedback will be used 
for reinforcement and produced within 30 ms of the sub-
ject’s eISFs (0.0–0.1 Hz) within the pre-defined ROIs (i.e. 
dACC and/or PCC; Fig.  1) surpassing the threshold(s). 
These ROIs were selected because, as outlined in the 
introduction, they are considered key cortical nodes 
within the core RSNs which are consistently found to be 
disrupted in ID populations. sLORETA permits the selec-
tion of any cortical region for feedback of the current 
density using voxels selected based on Montreal Neuro-
logical Institute (MNI) coordinates [211]. For a complete 
list of targeted voxels for this trial, see Additional files 1 
and 2.
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The reward threshold(s) will be manually adjusted in 
real-time to maintain a 60% ± 10% success rate. Manual, 
rather than automated, thresholding was chosen as it has 
been reported to lead to better EEG-learning [125, 173, 
206, 208]. The yoked-sham sessions will be identical to 
active sessions, including live EEG recordings and real-
time motion/EMG artefact alerts, however, the auditory 
rewards will derive from playbacks of genuine ISF-NFB 
sessions from another female ID participant at the same 
training stage recorded via free, open-source Audacity 
software [212] which uses the computer’s sound card as 
an audio to digital converter. Importantly, this type of 
control allows matching of rewards and performance 
across sham and genuine conditions, thereby controlling 
as much as possible the learning context and degree of 
motivation [213] while theoretically severing the oper-
ant conditioning aspect of EEG-NFB. Additionally, it 
has been reported that training effects are more robust 
when the clinician is present [214], therefore, irrespective 
of group assignment, the trainer will be present for the 
duration of all sessions. Further, the trainer will monitor 
the participants’ protocol adherence. A detailed descrip-
tion of the trial intervention using the Template for 

Intervention Description and Replication (TIDieR) [215] 
has been provided in Table 1.

Participant timeline
The trial period for each participant will be approximately 
10 weeks and consist of one 30-min screening interview, 
two 60-min baseline assessments approximately 1 week 
apart, six 30-min genuine or sham ISF-NFB sessions (3× 
per week over 2 consecutive weeks) starting within 1 
week after baseline #2, a 60-min post 6 sessions assess-
ment, six 30-min genuine ISF-NFB sessions (3× per week 
over 2 consecutive weeks), a 60-min post 12 sessions 
assessment, and a 60 min 1-month follow-up assess-
ment (Table 2 and Fig. 2). All post-treatment assessments 
and procedures will be identical to those performed at 
baseline.

Criteria for discontinuing or modifying allocated 
interventions
Participants will be advised that they were able to with-
draw at any time without giving a reason or may be 
withdrawn by the lead investigator if they (1) experience 
significant adverse effects that were deemed detrimental 
to their well-being or (2) are unable to adhere to protocol 
(e.g. missed >1 training session in either 6 session block, 
started or modified first-line therapies).

Strategies to improve adherence to interventions
We will attempt to mitigate adherence issues via auto-
mated email and text message reminders sent on the day 
of each training session.

Plans to promote participant retention and complete 
follow‑up
Once enrolled, every reasonable effort will be made to 
follow participants throughout the entirety of the study 
period via ongoing email and text messaging correspond-
ence. In the event of premature discontinuation of the 
study for any reason, participants will be made aware that 
all data collected up to the point of withdrawal may be 
used for analyses.

Relevant concomitant care permitted or prohibited 
during the trial
Participants were asked to maintain any current first-
line mental health therapies (e.g. pharmacotherapy) for 
the entire length of the trial period (i.e. baseline through 
follow-up). Any changes or introductions of first-line 
therapies (e.g. altered pharmacotherapy dosages, intro-
duction of intensive psychotherapy) will render partici-
pants ineligible.

Fig. 1 Targeted regions-of-interest (ROIs). Abbreviations: dACC, 
dorsal anterior cingulate cortex; PCC, posterior cingulate cortex. Note: 
red dot indicates salience network (SN), and blue dot indicates the 
default mode network (DMN) node
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Provisions for post‑trial care
In the unlikely event of injury, participants will be eligible 
to apply for compensation from the Accident Compen-
sation Corporation (ACC) of New Zealand just as they 
would be if they were injured in an accident at work or at 
home. Although there are private providers abroad (e.g. 
Asia, North America, and Europe), should this trial pro-
vide evidence of efficacy, there is currently no access to 
this therapy within New Zealand.

Measurements
Primary outcomes: HADS, fb‑EEG
The central importance of PROs in clinical trials has 
been emphasized by both international health regulatory 
agencies and patients [216, 217], therefore, the primary 
outcome of interest will be the HADS [218, 219]. Addi-
tionally, the importance targeted EEG-learning assess-
ments in NFB trials has been emphasized by researchers 
[120–126], therefore activity (i.e. amplitude of the oscilla-
tions) and connectivity (i.e. coordinated amplitude and/
or phase of the oscillations) changes within and between 
the targeted ROIs will also be of primary interest. Pri-
mary outcome measures will be collected at baseline, 
post 6 sessions, post 12 sessions, and 1-month follow-up.

Hospital anxiety depressions scale (HADS) The HADS 
is a valid and reliable 14-item, trans-diagnostic PRO 
measure used to assess anxiety and depression severi-
ties [218]. Response options are on a 4-point scale (0–3) 
based on participants experiences over the past week 
with anxiety and depression subscale scores graded as 

follows: 0–7 = ‘normal’, 8–10 = ‘mild’, 11–14 = ‘mod-
erate’, and 15–21 = ‘severe’ [220]. The HADS has been 
repeatedly shown to be a reliable and valid tool across a 
variety of settings [219, 221, 222]. There is some debate 
with respect to whether the HADS is best assessed via 
the total 14-item score [223–225] or two 7-item sub-
scale (anxiety and depression) scores [219, 222, 225, 226]. 
For our trial, we are considering the anxiety (HADS-A) 
and depression (HADS-D) subscale scores separately. 
Importantly, the minimum clinically important differ-
ence (MCID) for the HADS subscales is estimated to be a 
reduction of 1.5 to 2 points [227–229].

Full‑band EEG (fb‑EEG) The use of full-band EEGs 
permits the non-invasive examination of the entire 
spectrum of brain frequencies from infraslow (<0.1 Hz) 
to gamma (>30 Hz) using scalp-recorded electrical sig-
nals acquired from direct current (DC) coupled amplifi-
ers. Further, source-localization software can locate the 
probable generators (i.e. brain sources) responsible for 
the acquired electrical signals, thereby permitting us to 
assess activity (i.e. log-transformed current source den-
sity; log-CSD) and connectivity (i.e. lagged linear connec-
tivity; lag-CON). EEG pre-processing will be performed 
offline using EEGLAB version 14.1.1 [230] and ERPLAB 
version 6.1.4 [231] running on MATLAB 2021a (The 
MathWorks, Inc., Natick, MA, USA.). Custom scripts 
developed in MATLAB utilizing EEGLAB, ERPLAB, and 
MATLAB functions will be used. The raw EEG will be 
imported into MATLAB using EEGLAB. Channel loca-
tions/coordinates will be determined via EEGLAB’s Mon‑
treal Neurological Institute (MNI) coordinate file for BEM 

Table 2 Schedule of enrollment, interventions, and assessments

Abbreviations: MINI Miniature International Neuropsychiatric Interview, PROs patient-reported outcomes, EEG electroencephalography, ECG electrocardiography, T0 
interview, T1 baseline #1, T2 baseline #2, T3–8 neurofeedback sessions 1 through 6, T9 post  6th session assessments, T10–15 neurofeedback sessions 7 through 12, T16 
post  12th session assessments, T17 1-month follow-up assessments

T0 T1 T2 Allocation T3‑8 T9 T10‑15 T16 T17

Enrollment

 Eligibility screen (MINI) ✓
 Informed consent ✓
 Anthropometric measures ✓
Assessments

 PROs ✓ ✓ ✓ ✓ ✓
 EEG ✓ ✓ ✓ ✓ ✓
 ECG ✓ ✓ ✓ ✓ ✓
 DESS ✓ ✓ ✓ ✓
 Blinding integrity ✓
Groups

 Active ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
 Sham ✓ ✓ ✓ ✓ ✓ ✓



Page 11 of 26Perez et al. Trials          (2022) 23:949  

Fig. 2 Flow chart of enrollment, assessments, and interventions. Abbreviations: MINI, Mini International Neuropsychiatric Interview; ISF1, 1-region 
Infraslow Neurofeedback; ISF2, 2-region Infraslow Neurofeedback
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dipfit model with the head centre optimized. Non-EEG 
(i.e. VEOG, HEOG, EKG, EMG, GSR) and four EEG (i.e. 
F11, FT11, F12, and FT12) channels will then be removed 
prior to manual co-registration used to match the coordi-
nates of the 60 remaining channels to the realistic Bound‑
ary Element Model (MNI) head model. Of note, the four 
EEG channels selected for removal lack locations in the 
MNI coordinate file, thereby precluding subsequent pre-
processing. The data will then be truncated to retain 
only the middle 600-s of the time-series, and the PREP 
pipeline version 0.55.1 [232] will be run to identify and 
interpolate bad channels, remove line noise, and robust 
average reference the data. This pipeline has been used 
previously for evoked potentials and resting-state EEG 
data [233, 234]. PREPed EEGs with >25% (i.e. >15) bad 
channels identified will not be considered for further 
analyses. For identification and marking of artefact-con-
taminated epochs, continuous PREPed EEGs will be 1 Hz 
high-pass filtered using a finite impulse response (FIR) 
filter implemented using EEGLAB’s pop_firwsord func-
tion (window = Kaiser 5.653, transition bandwidth = 1.5 
Hz, max ripple = 0.001, order = 2416) and segmented 
into 1-s epochs. Epochs will automatically be marked as 
artefacts if containing one or more of the following char-
acteristics: (i) absolute voltage exceeds 100 μV, (ii) peak-
to-peak voltage exceeds 150 μV in any sliding window 
of 200 ms width with a step size of 100 ms, (iii) voltage 
greater than 100 μV resulting from a step-function with a 
sliding window 200 ms wide with a step size of 50 ms, (iv) 
sample-to-sample difference exceeding 50 μV, or (v) abso-
lute voltage less than 1 μV for 150 ms (i.e. flat-lined data). 
Following this, manual verification/correction of epoch 
classifications (i.e. artefact and non-artefact) will be per-
formed. Manually verified time-series with >50% (i.e. >5 
min) artefact-contaminated epochs will be excluded from 
further analyses. For independent component analysis 
(ICA), the data will again be 1 Hz high-pass FIR filtered 
(window = Kaiser 5.653, transition bandwidth = 1.5 Hz, 
max ripple = 0.001, order = 2416), down-sampled to 500 
Hz to reduce computation time, have noisy channels and 
artefact-contaminated epochs removed, and decomposed 
into maximally independent components (ICs) which are 
spatially fixed and temporally discrete [235] using adap-
tive mixture ICA (AMICA) [236]. AMICA was selected 
based on its superior performance when compared with 
other ICA algorithms [237]. The resulting ICA weights 
will be applied to 1–100 Hz band-pass FIR filtered (win-
dow = Kaiser 5.653, transition bandwidth = 1 Hz, max 
ripple = 0.001, order = 3624) data. We will use ICLa-
bel [238] with manual verification to categorize the ICs 
as brain or other (i.e. muscle, eye, channel noise, line 
noise, or other) based on their spatial distribution (scalp 
topography), time course, spectrograms, event-related 

potential (ERP) images, and current dipole models using 
recommendations from Jung et al. [239], Chaumon et al. 
[240], and the website https://labeling.ucsd.edu/. Finally, 
bad ICs will be removed, noisy channels interpolated, and 
the data 0.01–100 Hz bandpass infinite impulse response 
(IIR) filtered  (1st order Butterworth) to give cleaned data-
sets. This IIR filter has been utilized in previous studies 
of eISFs [80, 241]. Finally, cleaned datasets with ICA will 
be downsampled to 128 Hz to reduce computation time 
and exported to ASCII text files for subsequent analyses. 
Figure  3 shows an overview of the EEG pre-processing 
pipeline.

Via LORETA-KEY software (v20210701, freely avail-
able at http:// www. uzh. ch/ keyin st/ loreta. htm), ASCII 
text files will be used as input to compute cross-spectral 
matrices for each participant for seven frequency bands 
(infraslow 0.01–0.1 Hz; slow 0.2–1.5 Hz; delta 2–3.5 Hz; 
theta 4–7.5 Hz; alpha 8–12 Hz; beta 12.5–30 Hz; gamma 
30.5–44 Hz) utilizing fast Fourier transform (FFT). To 
allow for 2 complete cycles of the lowest frequency of 
interest (i.e. 0.01 Hz) and to obtain smooth power spec-
tral density, EEGs will be segmented into 200-s epochs 
with Hanning (Hann) tapered windows applied. The 
cross-spectral matrices will then be averaged for each 
subject and used as input to exact LORETA (eLORETA) 
to compute whole-brain current source density (CSD; 
A/m2) without assuming a pre-defined number of active 
sources [242, 243]. Using the MNI-152 (Montreal Neu-
rological Institute, Canada) template, eLORETA pro-
duces an inverse solution space consisting of 6239 corti-
cal grey matter voxels at 5 mm resolution and has been 
shown to produce exact, zero-error localizations even 
in the presence of measurement and structured biologi-
cal noise. eLORETA performs voxel-by-voxel between-
condition comparisons of the CSD distribution. Statisti-
cal non-parametric mapping (SnPM) will be performed 
for each contrast using built-in voxel-wise randomization 
test (5000 permutations) to calculate the empirical prob-
ability distribution for the max-statistic (e.g. the maxi-
mum of a t or an F statistic) under the null hypothesis 
while correcting for multiple testing (i.e. for the collec-
tion of tests performed for all electrodes and/or voxels, 
and for all time samples and/or discrete frequencies). For 
each contrast, the voxel-level, two-tailed max-statistic 
was used as input to LORETA-KEY software to identify 
and visualize differences/changes in log-CSD for each of 
the seven frequency bands. Furthermore, for each con-
dition, log-CSDs were averaged across all voxels within 
a 10-mm radius of the centre of mass MNI coordinates 
derived from previous literature [244] of the targeted 
ROIs (Fig. 4). This output was exported to Excel (version 
2112) and analysed in R (version 4.0.5 [245];) to identify 

http://www.uzh.ch/keyinst/loreta.htm
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differences/changes in log-CSD between contrasts for 
each ROI in each frequency band. Next, functional con-
nectivity (FC; i.e. lag-CON [242]) between the targeted 
ROIs was calculated for each group at each time point 
in LORETA-Key. Output was then exported to Excel and 
analysed in R to identify differences/changes between 

contrasts in each frequency band. Finally, as effective 
connectivity (EC) reflects directed functional connectiv-
ity, significant ROI pairs identified from FC analyses were 
selected for EC (i.e. Granger causality [246]) analyses. As 
with FC, EC was calculated in LORETA-Key, exported to 
Excel, and analysed in R.

Fig. 3 Overview of EEG pre-processing pipeline. FIR, finite impulse response; IIR, infinite impulse response; ICA, independent component analysis; 
AMICA, adaptive mixture ICA; ICs, independent components; Hz, Hertz
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Secondary outcomes: MEDI, IDAS‑II, IUS‑12, RTQ‑10, HRV
The Multidimensional Emotional Disorder Inventory 
(MEDI) [247, 248], Inventory of Depression and Anxi-
ety Symptoms – Second Version (IDAS-II) [249, 250], 
Intolerance of Uncertainty Scale – Short Form (IUS-12) 
[251], and Repetitive Thinking Questionnaire (RTQ-10) 
[252–254], and heart rate variability (HRV) will be con-
sidered secondary outcomes of interest which are also 
collected at baseline, post 6 sessions, post 12 sessions, 
and 1-month follow-up.

Multidimensional emotional disorder inventory 
(MEDI) The MEDI, which has been validated on both 
clinical [247] and non-clinical [255] populations, is a 
49-item, trans-diagnostic PRO measure that employs a 
response scale ranging from 0 (not characteristic of me/
does not apply to me) to 8 (extremely characteristic of 
me/applies to me very much) to assess nine ID-related 
symptom domains, originally proposed by Brown and 
Barlow [256], including (1) Neurotic Temperament (5 
items), (2) Positive Temperament (5 items), (3) Depres-
sion (5 items), (4) Autonomic Arousal (5 items), (5) 
Somatic Anxiety (5 items), (6) Intrusive Cognition (6 

items), (7) Social Concerns (5 items), (8) Traumatic Re-
experiencing (5 items), and (9) Avoidance (8 items). 
Although validated clinical severity thresholds for the 
MEDI total subscale scores are still lacking, the authors 
of this measure have suggested that average subscale 
scores >4 (or <4 for positive temperament), >6 (or <2 
for positive temperament), and 7–8 (or 0–1 for positive 
temperament) may reflect moderate, severe, and extreme 
severities, respectively [257].

Inventory of depression and anxiety symptoms – sec‑
ond version (IDAS‑II) The IDAS-II is a valid and reli-
able 99-item, trans-diagnostic PRO measure that uses a 
response scale ranging from 1 (not at all) to 5 (extremely) 
to assess 19 current (past 2 weeks) ID-related symptom 
domains including general depression (20 items), dys-
phoria (10 items), lassitude (6 items), insomnia (6 items), 
suicidality (6 items), appetite loss (3 items), appetite gain 
(3 items), well-being (8 items), ill temper (5 items), mania 
(5 items), euphoria (5 items), panic (8 items), social anxi-
ety (6 items), claustrophobia (5 items), traumatic intru-
sions (4 items), traumatic avoidance (4 items), check-
ing (3 items), ordering (5 items), and cleaning (7 items) 
[249, 250]. Notably, in contrast to the other domains, the 
general depression domain is a composite of all 10 items 
from the dysphoria domain, as well as 2 items each from 
the suicidality, lassitude, insomnia, appetite loss and 
well-being domains. Recently, severity (mild, moderate, 
severe) thresholds have been introduced for 12 of the 
subscales including general depression, dysphoria, las-
situde, insomnia, suicidality, appetite loss, appetite gain, 
well-being, ill-temper, panic, social anxiety, and trau-
matic intrusions [258].

Intolerance of uncertainty scale – Short form 
(IUS‑12) The IUS-12 is a valid and reliable 12-item, 
transdiagnostic PRO measure that assesses the degree to 
which an individual considers the possibility of a negative 
event occurring unacceptable, irrespective of its probabil-
ity of occurrence [251, 259]. Whereas the original IUS-27 
was GAD-specific, the IUS-12 has been distilled in order 
to measure the core intolerance of uncertainty construct 
[260]. The IUS-12 uses a response scale from 1 (“not at 
all characteristic of me”) to 5 (“entirely characteristic of 
me”) with total scores that can range from 12 to 60 [251]. 
Although some researchers have claimed that the IUS-12 
is a unidimensional construct and recommend using only 
the IUS-12 total score [261–263], there has been consid-
erable support for a two-factor IUS-12 structure: (1) a 
7-item prospective IU scale related to action/approach-
oriented strategies in order to increase certainty (e.g. 
seeking more information), and (2) a 5-item inhibitory 
IU associated with inaction/avoidance-oriented thoughts 

Fig. 4 Regions-of-interest (ROIs) and their centre of mass 
coordinates. MNI, Montreal Neurological Institute; dACC, dorsal 
anterior cingulate cortex; PCC, posterior cingulate cortex
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and behaviours (e.g. delayed decision-making) [251, 259, 
264–271]. Intolerance of uncertainty (IU) is a common 
trait shared across the ID spectrum [271–274].

Repetitive thinking questionnaire (RTQ‑10) The RTQ-
10 is a 10-item, trans-diagnostic PRO measure [253] dis-
tilled from three disorder-specific scales: 1) the MDD-
associated Ruminative Responses Scale (RRS [275]), 2) 
the GAD-associated Penn State Worry Questionnaire 
(PSWQ [276]), and 3) the SOC-associated Post-Event 
Processing Questionnaire-Revised (PEPQ-R [277]). Par-
ticipants are asked to rate the truthfulness of each state-
ment with respect to their experience when they are “dis-
tressed or upset.” All items are rated along a 5-point scale: 
not at all true = 1, somewhat true = 3, or very true = 5 
allowing total scores that can range from 10 (low levels of 
latent repetitive negative thinking) to 50 (extremely high 
levels of repetitive negative thinking). Repetitive negative 
thinking (i.e. rumination and worry) is a characteristic 
feature of IDs [278–280].

Heart rate variability (HRV) Heart rate variabil-
ity (HRV) is the phenomenon of cyclical beat-to-beat 
changes in the interbeat interval (i.e. RR interval), the 
dynamics of which can give insight into cardiac auto-
nomic function [281]. ANS function is purportedly 
modulated by the core-ICNs and one of the most robust 
ANS disturbances found in IDs is cardiac dysautonomia 
in the form of reduced HRV [52, 96, 103, 280, 282–293]. 
This has significant clinical implications considering 
that cardiovascular disease is the leading cause of mor-
tality in people with mental illness [52, 294, 295]. HRV 
is typically measured via the standard time-domain 
(i.e. standard deviation of normal-to-normal intervals, 
SDNN (ms), root mean square of successive differences 
between normal-to-normal intervals, RMSSD (ms)) and 
frequency-domain (i.e. LF-HRV = 0.04–0.15 Hz and 
HF-HRV = 0.15–0.4 Hz absolute power  (ms2)) indices, 
however, non-linear analyses (e.g. Poincaré plot) are fast 
emerging as a way to characterize the complex, non-
linear dynamics of cardiac-ANS interactions [296]. The 
raw ECG signals will be extracted in EEGLAB and saved 
as EDF (.edf ) files. Using MATLAB 2021a and modifi-
cations to the open-source code for HRVTool version 
1.07 (https:// github. com/ Marcu sVoll mer/ HRV) [297], 
ECG time-series will be band-pass IIR filtered (10–35 
Hz,  4th order Butterworth) to remove signal drift and 
line noise, undergo automated annotation of R-peaks, 
and be interpolated using the shape-preserving piece-
wise cubic Hermite interpolating polynomial (Pchip) 
method to correct for artefacts (e.g. ectopic or missing 
beats). Pchip interpolation was chosen because appears 

to perform best across the spectrum of HRV metrics 
as it preserves the linear trend as well as the non-lin-
ear contributions in the R-R timeseries [298]. Using the 
HRVTool graphical user interface (GUI), Poincaré plots 
will also be examined to look for evidence of regularities 
(e.g. ‘comet’ shape) with those showing marked irregu-
larities suggestive of cardiac arrhythmias (e.g. ‘fan’ 
shape) excluded from further analyses. Next, the first 
10 s of ECG traces will be truncated to allow for signal 
stabilization followed by manual inspection/correction 
of the succeeding 5 min (i.e. 10–310 s) to ensure proper 
annotation of R-peaks generated from normal sinus 
rhythm with traces requiring >5% R-R interval interpo-
lation excluded from further analyses. Finally, using the 
GUI’s R-R tachogram (time-series and spectrum), con-
secutive 60-s epochs (i.e. 1–5 min) from spontaneous 
breathing ECGs will be examined with those suggesting 
mean respiration rates outside of 0.15–0.4 Hz (i.e. 9–24 
breaths per min) excluded from further analyses. Indi-
ces for both spontaneous and paced breathing condi-
tions will be reported.

Sample size
This is the first study examining the effects of sLORETA 
ISF-NFB in an ID population. Due to its novelty, there 
was no existing information around standard deviations 
for the measurements of interest. Therefore, no formal 
sample size or power calculations were made. Our group 
has previously carried out an sLORETA ISF-NFB trial in 
obese females [159]; however, this is a different popula-
tion than the one in our trial and therefore not consid-
ered comparable for this study. Importantly, due to the 
pilot nature of this trial, only potential efficacy (or lack 
thereof ) can be established via statistical analyses.

Statistical considerations
Objective 1
Between-group (sham vs. ISF1 and ISF2) comparisons 
post-6 sessions will be performed for the PROs and neu-
rophysiological measures. For this analysis, we will use 
LORETA-Key software and a Bayesian model with ran-
dom effects to allow for baseline differences and non-spe-
cific temporal effects between participants. A sensitivity 
analysis will be carried out to compare this approach with 
an ANCOVA that includes a linear baseline adjustment.

Objective 2
Regression methods will be used to explore the relation-
ship between changes in the primary PRO subscales (i.e. 
HADS-A, HADS-D) and targeted ROI activity and con-
nectivity for all participants post 6 sessions.

https://github.com/MarcusVollmer/HRV
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Objective 3
Within-group (ISF1 and ISF2) comparisons between 
post-6 sessions and post-12 sessions will be per-
formed for all outcome measures. The same model 
will be applied as in Objective 1 where random effects 
will now allow for post-6 session differences between 
participants.

Objective 4
Within-group (ISF1 and ISF2) comparisons between post-
12 sessions and 1-month follow-up will be performed for 
all outcome measures. This will use the same model as 
Objective 1 where random effects will now allow for post 
12-session differences between participants.

Objective 5
Regression analysis from Objective 2 will be extended to 
post 12-session and 1-month follow-up for the ISF1 and 
ISF2 groups.

Analyses were performed using LORETA-KEY soft-
ware, R, JAGS [299] and Stan [300] with analysis-
specific details described below. For all endpoints, 
responses were modelled assuming a normal distribu-
tion (e.g. with group-specific means and variances or via 
regression). When normality assumptions were not met, 
appropriate transformations were performed. Addition-
ally, potential endpoint covariates were examined (e.g. 
age); however, none exhibited correlations that were 
strong enough to warrant inclusion for denoising pur-
poses in the models. For the Bayesian analysis, JAGS or 
Stan was linked to R using the rjags or rstanarm library 
with estimates based on 3 chains of 25,000 iterations 
with a burn-in/warm-up = 10,000 iterations. Vague pri-
ors were used throughout.

Bayes’ theorem postulates that the probability of an 
event A given event B is proportional to the probability of 
event B given event A multiplied by the prior probability 
of event A:

Bayesian statistical analysis is based on the concept of 
prior knowledge/beliefs regarding random variables P(A) 
that are combined with a model relating data to those 
variables P(B|A) to generate a posterior probability dis-
tribution reflecting updated knowledge/beliefs about the 
variables given the collected data P(A|B) [301].

The describe_posterior() function in the BayestestR 
package [302] was used to generate posterior summary 
statistics including the distribution mean (M), 95% 
credible interval (i.e. highest density interval, HDI), 
probability of direction (pd), and the percentage of the 
full posterior within the region-of-practical-equiva-
lence (% in ROPE).

P(A|B) ∝ P(B|A) ∗ P(A)

• The HDI is the range of parameter values with a 
higher probability density than values outside the 
HDI [303]. As such, a 95% HDI can be interpreted 
as a 95% probability that the true (unknown) esti-
mate lies within the interval, given the observed 
data and priors [304]. In other words, it is an index 
of the top 95% most credible parameter values.

• The pd is an index of the existence of an effect and 
is represented by the certainty (50-100%) in the 
direction, positive or negative [302, 305]. Put sim-
ply, it is the percentage of the posterior on the same 
side as the posterior’s measure of central tendency 
(e.g. the mean). For pd interpretation, the following 
reference values have been suggested:

• ≤95% = uncertain
• >95% = possibly existing
• >97% = likely existing
• >99% = probably existing
• >99.9% = certainly existing

• The percentage in ROPE indexes the magnitude of 
an effect where the ROPE is the range of effect size 
values considered to be practically equivalent to the 
null [302, 305]. There is no uniquely correct ROPE; 
however, by convention, the ROPE range is often 
set at half the size of Cohen’s definition of small 
effect size (i.e. 0.2 [306];) resulting in ROPE val-
ues of ±0.1 and ±0.05 for standardized mean dif-
ferences (e.g. Cohen’s d = group 1 mean – group 2 
mean/pooled standard deviation) and standardized 
regression coefficients (i.e. sβ = coefficient from a 
regression on standardized variables), respectively 
[303]. As an aside, Cohen’s d values can be inter-
preted as follows: d < ±0.10 = negligible, ±0.10 < 
d < ±0.20 = very small, ±0.20 < d < ±0.50 = small, 
±0.50 < d < ±0.80 = medium, and d > ±0.80 = 
large [306] whereas sβs can be interpreted as fol-
lows: sβ < ±0.20 = weak association, ±0.20 < sβ < 
±0.50 = moderate association, sβ > ±0.50 = strong 
association [307]. For percentage in ROPE inter-
pretation, the following reference values have been 
suggested:

• >99% = negligible
• >97.5% = probably negligible
• ≤97.5 and ≥2.5% = undecided
• <2.5% = probably significant
• <1% = significant

For all outputs, checks for the validity of assumptions 
regarding the residuals (i.e. normal distribution, constant 
and equal variances), chain convergence (e.g. trace plots), 
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and posterior predictive model fit (e.g. Bayesian p-value) 
will be performed. Of note, a Bayesian p-value can be 
defined as “the probability, given the data, that a future 
observation is more extreme (as measured by some test 
variable) than the data” with values near 0.5 indicative of 
good model fit [308].

Interim analyses
Not applicable: no interim analyses will be performed, 
and no stopping guidelines will be established.

Methods in analysis to handle protocol non‑adherence 
and any statistical methods to handle missing data
We will utilize complete-case analysis for all endpoints 
and objectives. For post 6-session and/or post 12-ses-
sion/follow-up data to be included in the analysis, par-
ticipants must attend a minimum of 5 out of 6 ISF-NFB 
sessions in each respective 6-session block. Further, we 
will report the number and percentages of withdrawal in 
each of the groups. Based on our lab group’s prior feasi-
bility study using ISF-NFB in an obese female population 
[159], discontinuation/loss-to-follow-up following rand-
omization is expected to be 10-15%.

Adverse event reporting and harms
We will systematically monitor adverse effects from 
the therapy for the duration of the trial using the Dis-
continuation-Emergent Signs and Symptoms checklist 
(DESS [309]) created, verbatim, in Qualtrics and com-
pleted by participants on an iPad during EEG set-ups 
in the interventional and post-interventional phases. 
Initially developed for drug trials [309], the DESS is a 
structured 43-item self-report that utilizes the follow-
ing scale: 1=new symptom, 2=old symptom but worse, 
3=old symptom but improved, 4=old symptom but 
unchanged, 5=symptom not present. The DESS has 
been used for the assessment of treatment-related side-
effects in ID populations [310, 311] and, recently, has 
been employed to monitor adverse-effects specifically 
associated with NFB therapy [312]. Participants may 
be withdrawn from the trial by the investigators, even 
without their request, in the event of serious adverse 
effects. As detailed in the PIS, a brief (4-item) inter-
view used during our group’s prior sLORETA ISF-NFB 
feasibility trial revealed that, although unusual or vivid 
dreams were experienced by some participants, there 
were no serious adverse effects [160].

Data management and processing
Participant paper files, including case-report-forms 
(CRFs) and MINI assessments, are to be kept in numer-
ical order and stored in a locked room accessible only 
to the researchers. PROs will be electronically stored in 

Qualtrics with a back-up copy automatically generated 
and sent to the lead researcher’s trial email address. 
All data collected will be entered into Microsoft Excel 
(version 2112) and double-checked for accuracy by the 
data analyst at the time of entry. Participant data will be 
maintained for a period of not less than 10 years after 
the completion of the study.

Confidentiality
All information generated in this study will be consid-
ered highly confidential and is not to be shared with any 
persons not directly concerned with the study. For de-
identification purposes, participants will be assigned 
unique study numbers upon enrolment. All electronic 
records will be identified solely using assigned study 
numbers and stored locally in a password-protected 
database. All paper records will be stored on-site in a 
locked office accessible only to the researchers directly 
involved in the trial. Furthermore, paper documents 
that contain personal identifiers (i.e. informed consent 
forms), will be stored separately from de-identified 
paper records (i.e. CRFs and MINIs).

Access to data
The final trial dataset will be password protected and 
housed locally at the research lab. Other team members 
will be provided access to this dataset by TMP upon 
request. To ensure confidentiality, data dispersed to 
project team members will be blinded of any identify-
ing participant information.

Plans for collection, laboratory evaluation and storage 
of biological specimens for genetic or molecular analysis 
in this trial/future use
Not applicable: no specimens collected

Plans to give access to the full protocol, participant 
level‑data and statistical code
The full protocol will be submitted for publication to a 
peer-reviewed, open-source journal prior to analyses 
commencement. No more than 2 years following the 
final data collection, we will deliver the completed, de-
identified dataset and statistical code to the appropriate 
data archive for sharing purposes in line with the scien-
tific imperatives of increased transparency, reproduc-
ibility, and interpretation of trials.

Oversight and monitoring
Composition of the coordinating Centre and trial steering 
committee
Not applicable: no coordinating centre or trial steering 
committee for this trial
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Composition of the data monitoring committee, its role 
and reporting structure
Due to the relatively short duration of recruitment, non-
invasive make-up of the procedures/interventions, and 
non-serious nature of adverse effects reported in our 
prior feasibility trial, no formal data monitoring commit-
tee will be established.

Frequency and plans for auditing trial conduct
Not applicable: no auditing of trial conduct will be 
performed.

Plans for communicating important protocol amendments 
to relevant parties (e.g. trial participants, ethical committees)
Substantive protocol amendments which may impact on 
the conduct of the study including changes to the study 
objectives, design, population, sample sizes, or proce-
dures will be agreed upon by the research team, updated 
in the trial registry, submitted to the ethics committee for 
approval, and updated on our online trial advertisements 
and web pages.

Dissemination policy
Every effort will be made to minimize the interval 
between the completion of data collection and release of 
study results. We estimate this process to take 12 months. 
Irrespective of magnitude or direction of effect, results 
from the study will be written up and submitted to inter-
national peer-reviewed scientific journals, presented at 
scientific conferences, and may form part of grant appli-
cations. In addition, once compiled, all participants will 
be provided with a digital copy of the results.

Discussion
Approximately one in five New Zealanders is dealing 
with a mental illness at any given time with the major-
ity of the population expected to experience psychopa-
thology at some point in their lifetime [7]. Alarmingly, 
New Zealand’s suicide numbers are increasing with 
the 2017–2018 rate the highest it’s been in 20 years [7] 
contributing to a staggering reduction in life expec-
tancy for mental illness sufferers of up to 25 years [7]. 
A recent government inquiry by the New Zealand gov-
ernment has shed light on the shortcomings of cur-
rent treatment and called for wider implementation of 
non-pharmaceutical approaches in treatment of mental 
health problems [7]. Similarly, scientists in other parts 
of the world are calling for research into “novel inter-
ventions that may be based on altering plasticity or 
returning circuitry rather than neurotransmitter phar-
macology” [313].

The implementation of safe, non-invasive neuromod-
ulation techniques that have the potential to impact 

neuroplasticity within and between large-scale ICNs 
may offer new treatment opportunities for individuals 
who either do not want, respond to, or tolerate standard 
interventions. Additionally, these techniques may serve 
as adjuncts to traditional treatments, potentially enhanc-
ing their efficacy. To date, ours is the only research group 
studying the effects of sLORETA ISF-NFB in clinical pop-
ulations. We believe targeting core ICNs via this novel 
therapy offers a promising new avenue in the treatment 
of IDs and other psychopathologies.

Trial status
Recruitment began on 15 February 2020 but was prema-
turely halted due to COVID-19 lockdown measures here 
in New Zealand. Recruitment efforts resumed on 15 June 
2020, however, due to budgetary and time restrictions 
imposed by the lockdown, we amended our protocol. 
Specifically, our recruitment goal for clinical participants 
was changed from 80 (40 males and 40 females) to 60 
females. Data collection is on track to be completed by 
the end of 2021.
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Protocol amendments
Notably, recruitment began in February 2020 but was prematurely halted 
in March 2020 due to COVID-19 lockdown measures here in New Zealand. 
Recruitment efforts resumed in June 2020, however, due to time and staffing 
restrictions resulting from the lockdown, we amended our original protocol. 
Specifically, our trial recruitment goal was changed from 40 males and 40 
females to 60 females. Additionally, rather than multiple PROs (i.e. HADS, MEDI, 
IDAS-II), the HADS was selected as the primary PRO endpoint because it has 
an established minimal clinically important difference (MCID) value. Finally, 
electrodermal activity (EDA) assessment was removed due to equipment 
malfunction during testing. All amendments occurred prior to the start of data 
analyses.
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